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ABSTRACT

An experimental test battery designed to measure numerical facility was
administered to 1,451 Johnson O'Connor Research Foundation (JOCRF) examinees.
The battery consisted of four worksamples: (a) Arithmetic; (bg Counting
Backwards--alternate and sequential subtraction of two quantities from a given
number; (c) Number Reasonins—-arran ement of numbers so that they satisf
arithmetic equations; and i } Rule Learning--induction and apglication o

rules derived from a symbolic system consisting of letters. n addition, the
Number Series worksample, involvin§ induction of numerical relationships from
ordered series of numbers, was administered to these same examinees as part of
the standard JOCRF battery and included with the four experimental worksamples
in the majority of the data analyses.

Al]l five worksamples displayed moderately high internal reliabilities
(.84-.89). Factor and item analyses revealed that each worksample measured
primarily one dimension. A factor analysis of the experimental bdttery
Yielded one factor. Arithmetic and Counting Backwards displayed the strongest

oadings on the Number factor, while Rule Learning and Number Series displayed
lower, though still strong, loadings on this factor. Number Reasoning's
lgading on the Number factor was between that of the two pairs mentioned
above.

Discriminant validitg was examined by analyzing the experimental
the other worksamples of the standard JOCRF
battery. In Teneral, the numerical facility tests displayed relatively low
average correlations (.14-.30) with the cognitive worksamples of the JOCRF
battery; their average correlations with the noncognitive uorksamgles were
even lower (.06-.10). Arithmetic and Counting Backwards dis layed lower
correlations with the worksamples of the JOCRF battery than did Rule Learning
and Number Series. As before, Number Reasoning displayed an average
correlation with the other worksamples that was between that of the two
irs. Multiple regression revealed that between 59 and 76% of the variance

n the experimental worksamples remained unexplained after all 25 JOCRF
worksamples were partialled out. This indicates that the worksamples of the
numerical facility battery provide information that cannot be obtained form
the standard JOCRF battery alone.

Predictive validity was investigated by dividing examinees into four
college-major groups (quantitative, business, social science, and humanities)
and obtaining an average score for each group on each of the numerical
facilitg tests. All five experimental worksamples discriminated to some
degree between the groups. However, differences among the four college-major
categories were largest for Rule Learning and Number Series and smallest for
Arithmetic and Counting Backwards, a reversal of the results obtained for
discriminant validity. Differences among the groups on Number Reasoning were
between those of the two pairs.

It was concluded that based on internal structure, discriminant validity,

and Yredictlve validity, all five numerical facility worksamples could be
considered as suitable measures of numerical facility.
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A

INTRODUCTION

Thurstone (1938) wrote that "the insistence of the numerical
factor makes it almost certain that it represents a unique
ability"” (p. 83). He also felt that there was some evidence that
this ability was genetic in nature. French (1951) wrote that
"the number factor is the clearest of them all" (p. 115). The
research summarized in this paper represents an effort to
identify and to measure the construct of numerical facility.

This was done using an experimental test battery and other tests
from the aptitude battery of the Johnson O0'Connor Research
Foundation (JOCRF).

This paper is divided into four parts. The first section
introduces the concept of numerical facility and reviews some of
the relevant literature in this area. Much of the literature
presented in this section was presented in greater detail in
Technical Report 1985-3. The second section describes the tests
that made up the experimental numerical facility battery and
their administration. The third section reviews results of the
administration of the experimental battery and its relationship
to the aptitudes measured by the rest of the JOCRF battery. A
summary of these results and conclusions based on this summary
are presented in the fourth and final section.

‘The Construct of Numerical Facility

By definition, numerical facility involves an ability to work
with numbers. However, there are many tasks that employ numbers
and that are very different from one another. The most commonly
encountered task that utilizes numbers is simple arithmetic. For
many individuals, simple arithmetic requires little or no
reasoning; it is simply an exercise in the recall of already
existing knowledge structures (e.g., the multiplication table).
Some tasks utilizing numbers involve primarily the manipulation
of short-term memory (e.g., Digit Span on the Wechsler Adult
Intelligence Scale; Wechsler, 1958). Still other tasks employing
numbers demand complex reasoning of one form or another (e.g.,
number series tests).

Many studies have attempted to distinguish between various
types of numerical tasks. Typically in these studies, several
tests employing numbers were administered in conjunction with
other aptitude tests. The correlation patterns among all these
tests were then explored using data reduction techniques such as

factor analysis. The following section presents the results of
some of these studies.

Factor Analytic Studies

Thurstone's (1938) now classic primary mental abilities study
was the first study to formally identify a numerical factor.
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Thurstone administered 57 tests to students at the University of
Chicago and found these tests to be best described by 13

factors. One of these he named the numerical factor (N). Ten of
the 57 tests administered by Thurstone involved numbers. Nine of
these loaded on {(correlated with) N .85 or higher. However,
while almost all the numerical tests displayed relatively high
loadings on N, it was those tests involving simple arithmetic
that loaded highest (.61-.81). Tests not restricted to simple
arithmetic (e.g., number series) tended to display their highest
loadings on other factors.

The results of factor analysis depend importantly on choices,
often arbitrary ones, made by the researcher. This is especially
true of the number and type of factors that are extracted from a
particular correlation matrix. It is therefore important to note
that Thurstone's solution was consistent with several other
factor analytic solutions of the same correlation matrix (Kaiser,
1960). "More particularly," Kaiser wrote, "correlations between
number factors defined by the different rotational solutions
generally are higher than other correlations [.80~-.97]" (p. ,
155). 1In other words, Thurstone's N was especially stable across
the various factor analytic solutions.

Other factor analytic studies have displayed results that are
consistent with those obtained by Thurstone. 1In 1942 and 1943,
the Army Air Forces Aviation Psychology Program administered 15
batteries, most of which included numerical tests (Guilford &
Lacey, 1947). N emerged in factor analyses of 10 of these
batteries. In general, N appeared when a test involving simple
arithmetic was present and did not appear when such a test was
absent. Furthermore, tests of simple arithmetic tended to load
exclusively on N. On the other hand, tests involving numerical
reasoning (e.g., "word problems,"” number series) usually loaded
about equally on N and a reasoning factor. Such tests also
displayed moderate loadings on a verbal factor that is typically
defined by tests of reading and vocabulary. Most other factor
analytic studies exploring this topic obtained similar results
(e.g., Chein, 1939; Comrey, 19489).

The research presented to this point indicates that there is
indeed a unique ability associated with the manipulation of
numbers. This ability correlates highest with tasks of simple
arithmetic. Tasks involving arithmetic reasoning correlate
highly with this ability but correlate about equally with
reasoning tasks that do not employ numbers. The following
section addresses the possibility of a reasoning component in N.

Reasoning and Numerical Facility

While tasks involving simple arithmetic are the primary
defining tests of N, numerical tasks requiring reasoning also
correlate with this factor. There are at least two possible
explanations for the moderate correlations found between
numerical reasoning tasks and N. The first focuses on the



numerical component of these tasks. It could be argued that
since both simple and complex numerical tasks require arithmetic
computation, the variance in N that these two tasks share is
accounted for by this common component. A second possibility
focuses on the reasoning component. According to this argument,
the reasoning that accounts for good performance on numerical
reasoning tasks is similar to that which is used in simple
arithmetic computation.

Of the two hypotheses offered above, the first is the more
straightforward. However, it is difficult to believe that simple
computation, which is typically a small part of most numerical
reasoning tasks (number series excepted), accounts for enough
variance in reasoning tasks to completely explain the correlation
between them and arithmetic tasks. 1Individuals performing
aritheetic tasks spend all, or almost all, of their time on
simple computation. Consequently, variance on this task is due
to individual differences in the ability to perform simple
arithmetic problems quickly. Alternately, in numerical reasoning
tasks the bulk of the time is spent on the reasoning component
rather than on computation. Thus, it would be expected that
almost all of the variance in such tasks is a result of
individual differences in the ability to reason numerically.

This rationale suggests that the correlation between numerical
reasoning and arithmetic tasks is explained, at least in part, by
a reasoning component that the two tasks share,

A study conducted by Forsyth and Ansly (1982) supports the
hypothesis that simple arithmetic and arithmetic reasoning share
a reasoning component. Forsyth and Ansly were interested in the
degree to which computational skills were associated with
differences in the performance of numerical reasoning problems.
They administered these problems to 567 high school students.
Students in one condition completed all the necessary
computations by hand; students in the second condition used
calculators. No significant differences were found between the
two groups. This was taken to indicate the minor role
computational skills play in the solution of mathematical
problens,

Werdelin and Stjernberg (1971) demonstrated that numerical
reasoning is associated with nonnumerical reasoning more than it
is associated with tasks involving numbers. They gave subjects
arithmetic problems, number series, and nonnumerical logical
reasoning. They found that the more difficult a problem was, the
higher it tended to load on a general reasoning factor. In other
words, the more reasoning required by a numerical problem, the
less it loaded on N. In the Kit of Factor-Referenced Cognitive
Tests (Ekstrom et al., 1976), the General Reasoning factor is
defined exclusively by tests involving the manipulation of
numbers. However, none of these tests are purely computational.

No clear conclusion can be reached based on the available
evidence. While simple arithmetic is the primary defining test
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of N, the possibility that reasoning explains some of the
variance in N has not been ruled out.

The tasks described to this point all involve numbers. The
following section explores whether numerical facility can be
measured by tasks that do not employ numbers.

Is Numerical Facility Restricted to Numbers?

By definition, tasks loading highly on N differ from those
not loading highly on N. One readily observable difference is
that "N tasks" typically employ numbers while non-N tasks
generally do not employ numbers. This would suggest that at
least part of N's uniqueness is a result of its association with
a nuaber system. Nevertheless, a question remains as to whether
this ability is specific to numbers, or whether it is helpful in
the manipulation of symbolic systems in general.

Coombs (1941) hypothesized that arithmetic ability involves
the capacity to manipulate symbols using specified rules. 1In
order to test his hypothesis, Coombs constructed a task requiring
the manipulation of letters using rules that were consisteht with
his conceptualization of numerical ability. He administered this
task along with tests measuring seven of Thurstone's (1938)
Primary Mental Abilities. In his study only simple arithmetic
problems loaded highly on N. At the same time, the correlations
between tests of letter manipulation and those involving
arithmetic operations ranged between .27 and .52. Of 30 such
correlations, 24 were .35 or higher.

Coombs (1941) concluded that “"the number factor is most
clearly identified by very simple number tests," and that his
results "are in agreement with the hypothesis that number ability
is characterized by a facility in manipulating a symbolic system
according to a specified set of rules" (pp. 188-89). Vernon
(1961) disputed Coombs's conclusions. He felt that the
relatively small correlations between N and tasks not involving
numbers indicated that number facility is number specific.

The disagreement between Vernon and Coombs may be a result of
a common problem that arises in interpreting studies such as the
one noted above: the distinction between aptitude and
achlevement. It is expected that the correlation between the two
is high but not perfect. Arithmetic, which is highly practiced,
is primarily a measure of achievement. Coombs's (1941) letter
manipulation task is, by virtue of its novelty, primarily a
measure of aptitude. The observed correlation between both tasks
is the product of their respective correlations with an identical
latent trait (e.g., numerical facility). Even if letter
manipulation and arithmetic correlated .7 with a common latent
trait, their observed correlation would be only moderate (.49).
Consequentl]ly, moderate correlations between two tasks are not
necessarily an indication that the two do not primarily measure
the same latent trait.



While a clear conclusion cannot be reached from Coombs's
(1941) study, his ideas are important in that they provide a
possible framework for separating ability from achievement in the
area of numerical facility.

An interesting result that emerged from Coombs's (1941) study
was letter manipulation's higher correlation with arithmetic
following practice on the former. This suggested that part of
the uniqueness of arithmetic tasks may lie in their highly
practiced nature. The following section explores this
possibility.

Automatization

The initial learning of arithmetic involves reasoning
(Werdelin & Stjernberg, 1969). After a time, numerical
operations become highly practiced to the point that for most
educated adults they are "automatized." Thus, individual
differences in arithmetic (and therefore in numerical facility)
may be due in part to individual differences in the ability to
automatize. In other words, it is possible that automatization
is one component of the latent trait of numerical facility.

As noted above, Coombs's (1941) results suggest that
arithmetic correlates higher with a practiced response than an
unpracticed response. Keats (1965) administered arithmetic,
arithmetic reasoning, verbal, and perceptual tests to college
students. He found a possible "automatic process" factor on
which multiplication loaded .88. Because of the high loading, it
is suspected that his automatic process factor is a variant of N.

In a factorial investigation of perceptual speed, Bechtold
(1947) administered perceptual, verbal, and numerical tests to
college students. In his oblique solution, the first order
factor of N correlated .74 with the second order factor of
Perceptual Speed. 1In another study of perceptual speed, Werdelin
and Stjernberg (1969) found that practice increased the
correlation of tests of perception with N. In other words,
individual differences in the performance of arithmetic tasks may
be associated with differences in speeded performance in general.

Differences in performance on speeded tasks have been
attributed, in part, to age differences. In addition,
differential performance on numerical facility tasks has been
associated, in part, with sex differences. The following section
examines some of these group differences.

Sex Differenges

There is general agreement that there is a sex difference
favoring males in mathematical reasoning (Maccoby & Jacklin,
1974). However, there is an ongoing debate concerning the
magnitude and the reasons for this difference. After reviewing
the relevant literature, Maccoby and Jacklin concluded that the
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male/female difference in numerical reasoning emerges at about
the age of 13 and increases during the high school years. This
difference tends to emerge earlier in gifted populations than in
less gifted populations (Halpern, 1986). When the number of
mathematics courses has been statistically controlled, the
male/female difference has generally been reduced (Meece, Eccles,
Parsons, Kaczala, Goff, & Futterman, 1982). In other words, the
male/female difference in numerical reasoning among individuals
that have taken an equal number of mathematics courses is smaller
than it is in the general population. Still, males retain a
slight superiority even after the number of mathematics courses
has been taken into account.

Differences between the sexes favoring males have been found
on the quantjtative section of the Scholastic Aptitude Test (SAT;
an average of 50 points; Halpern, 1986) and the numerical ability
component of the Differential Aptitude Test (DAT; an average of
.25 of a standard deviation; Bennett, Seashore, & Wesman, 1968).
Becker (1983) conducted an item analysis of the SAT and concluded
that the male/female difference was restricted to algebraic items
but was not evident on arithmetic items. Thus, it appears that
the males and females differ in their ability to reason
mathematically but not in their ability to compute. It should be
noted that females have been found to perform better than males
on speeded clerical tasks (e.g., see Bennett et al., 1968).
Female superiority in clerical speed may give them an advantage
over males in the performance of speeded simple arithmetic tasks.

Age Differences

The results of studies investigating the relationship between
age and numerical facility have been mixed (Salthouse, 1982).
Salthouse reported relatively little decline up to the age of 50
in the arithmetic subtest of the Wechsler Adult Intelligence
Scale (WAIS; Wechsler, 1958). The WAIS's arithmetic subtest is
made up of 14 simple word problems. Other investigators have
reported similar results (e.g., Owens, 1966; Thurstone &
Thurstone, 1949). Bromley (1974, p. 188) has suggested that
tests emphasizing "mechanical computation" tend to produce stable
age functions, while those requiring "thoughtful reasoning"”
display sharper declines with age. This hypothesis is not
consistent with the relatively small decline reported on the
WAIS's arithmetic subtest, which is a test of reasoning.
“Nevertheless," Salthouse (1982) concludes, "the
mechanical-thoughtful distinction may be useful in characterizing
much of the remaining data on age relationships in numerical
abilities" (p. 60).

When discussing intellectual functioning and aging, it is
useful to distinguish between fluid and crystallized abilities.
Crystallized abilities (e.g., vocabulary) are more dependent on
sociocultural influences, while fluid abilities (e.g.,
visuospatial aptitudes) are more dependent on genetic endowment
and neurophysiological state. The curves for the decline of
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these abilities with age differ. Crystallized abilities display
relatively little decline with age, while fluid abilities show a
comparatively sharp decline with age.

Several intellectual functions may be associated with
performance on numerical tests. It is useful to examine each of
these with regard to the fluid/crystallized distinction:

(a) Reasoning-~-Schaie (1980) suggested that numerical
reasoning is a fluid ability. As such it would be expected to
display significant declines with age. This is consistent with
Bromley's (1974) conclusion that thoughtful reasoning declines
with age. Tasks requiring inductive reasoning (e.g., number
series) are also considered measures of fluid abilities
(Willerman, 1979).

(b) Speed--The decline with age in response speed is well
documented (Welford, 1977). Many numerical tasks are speeded,
and in some numerical tasks (e.g., arithmetic) the proportion of
time spent on the motoric activity can be relatively large.
Willerman (1979) pointed out that "the distinction between
psychomotor tasks and other tasks is not easy to draw, since all
psychological tasks require some central processing mechanisms."
He added, however, that "the apparent simplicity or complexity of
the task may have little to do with the actual underlying
complexities of the central or peripheral mechanisms involved"
(p. 418).

In any event, it appears that both motoric speed and
information processing display significant declines with age
(Willerman, 1979). Birren (1974) pointed out that reduced
information processing speed means that information in short-term
memory cannot be rehearsed as well and, as a result, may decay
before it can be utilized. Consequently, less information has an
opportunity to enter long-term memory. Of more importance for
numerical tasks, problems may have to be attempted several times
before the solution is found.

(c) Short-term memory--Willerman (1979) wrote: "One may
conclude that there are declines in the efficiency of the
short-term memory store with increasing age" (p. 416). As noted
above, declines in short-term memory can be expected to most
adversely affect those tasks which have memory demands and in
which speed is important. Counting Backwards, one such task, is
described later in this section. When speed is not important,
one can compensate for short-term memory losses by increased
rehearsal and, as a result, increased utilization of long-term
mREeRory.

Summary and Conclusjions

The tasks that are the purest measures of numerical facility
are those involving simple arithmetic operations. It appears
that as numerical tasks increasingly involve reasoning, they load
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less on N and more on reasoning factors. Consequently, any test
battery intending to study numerical facility must include a test
of simple arithmetic. Arithmetic was the marker test (i.e., the
test used as a reference for the other tests) for the numerical
facility battery administered in this study.

While numerical facility does not primarily involve
reasoning, there is some indication that it is not completely
without a reasoning component. As a result, an arithmetic test
that requires a minimal amount of reasoning is also appropriate
as part of a numerical facility battery. The Number Reasoning
test was intended to fulfill this function in the current
battery.

It has also been hypothesized that arithmetic ability is one
example of a more general ability to manipulate symbolic systems
according to specified rules. If this were true, it would be
useful to administer a test involving a novel task utilizing the
manipulation of a8 nonnumeric system in addition to simple
arithmetic. The advantage of using such a task is that all the
examinees performing it will have had an equal degree of prior
exposure to the task (namely, no exposure). Consequently, the
task would be primarily a measure of aptitude rather than of
achievement. The Rule Learning test constructed for the current
battery was intended to fulfill this function.

A fourth test, Counting Backwards, was also administered as
part of the experimental numerical facility battery. This test
differs from the three other tests in that it appears to possess
a relatively large memory component. Both Counting Backwards and
Number Reasoning have been previously used by the Foundation.

The complete Johnson O'Connor Research Foundation battery
includes a Number Series test. It was both convenient and
instructive to regard Number Series as part of the numerical
facility battery for many of the statistical analyses conducted
in this study.

A more detailed description of the worksamples making up the
experimental numerical facility battery can be found in the
following section.

METHOD

Examinees

Examinees taking the JOCRF battery typically do so to obtain
career guidance. Most of the 1,451 examinees who took the
complete experimental numerical facility battery were
college-educated or college-bound. The average age of those
taking the numerical facility battery was 29 (SD = 10.3), and the
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median was 24.5. The JOCRF examinee is typically white and
middle to upper-middle class.

The data for this study were collected from 12 testing
centers across the United States over a period of five months.
Approximately 50% of the data were obtained from the eastern
United States (Boston, New York, Philadelphia, Washington, D.C.),
30% from the south (Atlanta, Dallas, Houston, Tulsa), and 20%
from the western United States (Denver, Los Angeles, San Diego,
Seattle).

Measures

The Complete JOCRF Aptitude Battery

The numerical facility battery was given as part of a larger
battery administered by the JOCRF. Table 1 presents a brief
description of the aptitudes measured by the standard worksamples
in this battery. A more detailed description of the experimental
numerical facility battery follows.

The Experimental Numerical Facility Battery

Arithmetic (Worksample 721 A*). The Arithmetic worksample
was made up of three parts. The first part contained 30
problems, all of which involved adding up four single-digit
numbers. Examinees were given one minute to work on these
problems.

The second part of the worksample contained 26 subtraction
problems. Twelve of these entailed subtracting three-digit
numbers from three-digit numbers, while the remaining problems
required subtracting three-digit numbers from four-digit
numbers. There were no negative solutions to the subtraction
problems. Examinees were given one minute and 40 seconds to
complete these problems.

The third part of the worksample contained 29 multiplication
problems. Each of the problems entailed multiplying a two-digit
number by a single-digit number. One minute and 20 seconds were
given for the completion of this section.

Counting Backwards (Worksample 420 AB). 1In the Counting
Backwards worksample the examinee was asked to subtract seven
from a given number and to then subtract six from the result.
Subtracting seven and six alternately was continued in sequence
until the examinee had reached a predetermined point. Each
examinee was given two essentially identical trials.

Number Reasoning (Worksample 436 H*). 1In the Number
Reasoning worksample the examinee was presented with a playing
board with six spaces marked across the top and two arithmetic
equations in the center. Hexagonal chips with numbers printed on
them were placed across the top. When the last chip was placed,



Table 1

The Aptitudes Measured by the Standard JOCRF Test Battery

Name

Description

Graphoria

Ideaphoria
Foresight

Inductive
Reasoning

Analytical
Reasoning

Wiggly Block

Paper Folding

Personality

Tonal Memory

Pitch

Discrimination

Rhytha Memory

Memory for
Design

Silogranms

Number Memory

Speed and accuracy in noticing if pairs of numbers are
the same or different.

Verbal fluency, the rate of flow of jideas.
Ability to keep one's mind on a long-range goal.

Quickness in seeing a common element among separate
facts, ideas, or observations.

Quickness in arranging ideas into logical sequence.
Structural visualization, an aptitude for visualizing
three-dimensional forms. Measured by the ability to
reconstruct a three-dimensional block.

Structural visualization. Measured by the ability to
rotate two-dimensional surfaces through
three-dimensional space.

Tendency to react from a general, objective viewpoint
versus reacting from a personal, subjective viewpoint.
Describes how well suited a person is for work that is
highly oriented toward person contact (objective) or
toward individual performance (subjective).

Ability to remember sequences of tones.

Ability to differentiate fine differences in pitch.

Ability to remember complex rhythmic patterns.
Memory for straight-line patterns.

Associative memory for English words paired with
nonsense syllables.

Ability to remember several six-digit numbers
simultaneously.

(ctd.)
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Table 1 (continued)

Name Description
Number Series Ability to detect complex numerical patterns.
Observation Quickness in recalling fine visual details.

Finger Dexterity Speed and accuracy in manipulating small objects with
one's fingers.

Tweezer Speed and accuracy in handling small objects with
Dexterity tweezers.
Reading Ability to read quickly and accurately.
Efficiency
Vocabulary Knowledge of English words.
11



the examinee was required to quickly and accurately arrange the
numbers in the spaces in the two equations in a way that
satisfied the specified arithmetic relationships. Examinees were
given a maximum of 30 seconds to complete each problem. It was
expected that most examinees would have little difficulty
completing each problem within the allotted time.

Rule Learning (Worksample 720 A*). The Rule Learning
worksample was divided into three categories of problems:
Induction, Practice, and Application. Examinees learned and
practiced the task in the first two sections. Enough time was
given for these sections so that most examinees would not feel
time-pressured. Induction and Practice were designed as a
preliminary to the more important Application section. It was
expected that the Application section would yield the most
meaningful scores of the three sections. Unlike the first two
sections, Application was designed so that most examinees would
not complete all the problems within the designated time limit.

In the Induction portion of the worksample, a set of examples
was given for each of three rules in a symbolic system consisting
of letters. The examinee was asked to discover each rule and to
use that rule in a set of ten problems. In all, the Induction
section consisted of 30 problems.

The Practice section followed each rule's Induction section.
In the Practice section the rule was explained, and the examinee
was given a set of 10 problems in which all the rules used to
that point were to be applied. Thus, the Practice section
consisted of 30 problems.

After all the rules had been learned and practiced, the
examinee was taught the use of parentheses in the test (same
principle as in conventional arithmetic expressions: operations
within parentheses are performed first). The Application
category that followed was made up of four problem sets in which
parentheses were used.

In order to complete the problems in these sets correctly,
the examinee was required to use the rules learned in the first
two sections. The first and third problem sets contained 20
problems each. The second and fourth problem sets were made up
of 13 problems each. 1In all, the Application section contained
66 problems.

To summarize, the Rule Learning test was made up of three
categories: Induction, Application, and Practice. Each of the
first two categories was made up of three sections. A Practice
section followed each Induction section. The final category was
made up of four sections. In all, examinees were given 10
sections containing a total of 126 problems.

The results of the administration of the numerical facility
battery are reported in the following sections.
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RESULTS

The Experimental Worksamples Considered Individually
Arithmetic

Scores. As noted earlier, the Arithmetic worksample was
divided into three subtests: (a) addition, (b) subtraction, and
(c) multiplication. Problems within each of these subtests were
scored as to whether they were answered correctly. Examinees
then received scores for each of the subtests based on the total
number of problems each completed correctly. The score for the
complete worksample was computed by adding up each examinee's
subtest scores. Examinees were also given scores for each
subtest and for the complete worksample based on the total number
of problems each completed (including both correct and incorrect
problems). Table 2 presents the means and standard deviations
for each of the Arithmetic subtests.

Internal structure. The internal structure of highly
speeded tests cannot be analyzed in the usual manner. Most of
the items that are attempted on these tests are completed
correctly. When this occurs, there is not sufficient variance at
the item level to make an item-level reliability estimate
meaningful. As can be observed from Table 2, the differences
between the total number of correct problems and the total number
attempted were very small (.63, 1.70, and 1.84 for addition,
subtraction, and multiplication, respectively). Indeed, over 92%
of all the problems that were attempted were completed correctly.

An alternative to estimating reliability at the item level
involves using subtest scores. Typically, there is sufficient
variance at the subtest level so that each subtest can be treated
as an item for the purpose of a reliability analysis. The
complete test is then viewed as being made up of as many items as

there are subtests. The following formula computes an estimate
of alpha reliability based on interitem correlations:
2 2
Iyx = K/ (K + K7r - Kr),

where Lx is alpha, K is the number of items on the test (in
the case”of arithmetic three: addition, subtraction,

multiplication), and r is the average correlation among the
items.

Table 3 presents the correlations between the subtests for
both the total attempted and total correct variables. When the
variable being used was the total number of problems completed
correctly, the average correlation among the subtests was .63,
resulting in an alpha of .84. When the variable was the total
number of problems attempted, the average correlation was .66,
vielding an alpha of .85. As can be seen, the reliabilities
derived from the two dependent variables are essentially the

13



Table 2

Descriptive Statistics for Arithmetic Worksample

No. Mean Mean
Subtest problems _correct SD attempted SD__
Addition 80 16.86 5.55 17.49 5.57
Subtraction 26 15.97 38.95 17.67 3.75
Multiplication 29 15.51 5.76 17.35 5.69
Total 86 48.34 13.26 52.51 13.19

14
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Table 8

Correlations Between Arithmetic Subtests

Subtest __ADD’ SUB MULT ARITZ _ ADDTOT __ SUBTOT __ MULTTOT _ARITTOT
ADD

SUB 64

NULT 63 61

ARIT 88 83 88

ADDTOT 98 63 64 88

SUBTOT 67 93 65 84 67

MULTTOT 63 60 96 86 64 66

ARITTOT 88 79 87 98 89 85 89

Note. N = 1,451. Decimal points omitted. All correlations significant at .001
level.

1Subteats with suffix "TOT" refer to total attempted, while those without suffix
refer to total correct.

2”ARIT“ refers to sum of ADD, SUB, and MULT.
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same. This result was expected because of the high correlations
between the total attempted and the total correct variables (see
Table 3). Based on the reliability analysis alone, it could not
be concluded that one of the variables was superior to the
other. In the interest of simplicity, subsequent analyses are
reported only for the total correct variable. Analyses using
this variable yielded results that were essentially the same as
those using the total attempted variable.

A high alpha coefficient usually indicates that a test is
unidimensional (Cronbach, 1951). Nevertheless, there can be
instances in which a test that is not unidimensional possesses a
high alpha coefficient (e.g., when a large group of items within
the test measures one dimension and a smaller group measures
another dimension). To verify the unidimensionality of the
Arithmetic worksample, it would have been necessary to conduct a
factor analysis (or some other data reduction procedure) of the
test's items. This could not be done because of the small
variance at the item level.

While the more appropriate test of unidimensionality could
not be conducted on this worksample, it is probably safe to
assume that arithmetic is unidimensional. First, based on the
literature that was reviewed in the introduction, it was expected
that any test made up of simple arithmetic problems would measure
only one dimension. Second, if Arithmetic were multidimensional,
it would be expected that items measuring different dimensions
would reside in different subtests. The high correlations
between the subtests indicate that this probably is not the
case. Analyses of the complete battery and of the bargraph data
were expected to shed additional light on this issue.

Age effects. Table 4 presents a breakdown by age of
examinees' scores on the complete worksample. Surprisingly,
there was a tendency for older examinees to do better than
younger ones. The correlation between age and total number
correct was .25 (p < .001). This indicates that only about 6% of
the variance in number correct was explained by age. However,
this figure is artificially low because of the overrepresentation
of younger examinees among those who took this worksample. When
a correction for the restriction of range was employed (Cohen &
Cohen, 1983) the correlation between number correct and age
increases to .81.

Sex effects. The performance of males and females differed
significantly on two of the three subtests. Males did better
than females on the addition subtest, averaging 17.28 correctly
completed problems to the females' average of 16.58, a difference
of .12 of a standard deviation (p < .05; n = 1,264). However,
this pattern was reversed for the subtraction subtest, where
females averaged 16.44 correctly completed problems to the males'
average of 15.62, a difference of .21 of a standard deviation (p_
< .001; n = 1,264). Because (a) the significant differences that
were observed were in opposite directions, (b) the magnitude of
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Table 4

Number of Arithmetic Problems Answered Correctly by Age

Age interval No. correct N
13 - 15 48.20 24
16 - 18 46.49 222
19 - 21 46.48 199
22 - 24 43.19 170
25 - 27 45.09 99
28 - 380 50.37 108
81 - 83 48.62 ' 80
84 - 36 654.18 7
37 - 89 §2.25 75
40 - 42 51.49 61
43 - 45 56.70 49
46 - 48 54.09 38
49 - 51 56.23 25
62 - 54 51.34 10
55 - 57 48.85 11
58 - 61! 59.36 8
Overall 48.50 1,266

1

No 60-year-olds took the worksample.
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these differences did not exceed .21 standard deviation, and (c)
the sexes did not significantly differ in their complete
worksample score, it cannot be concluded that, in general, males
and females differ in their performance on this worksample.

Summary. (a) The Arithmetic worksample is moderately
reliable, possessing an alpha of .84.

(b) While an item factor analysis could not be done, it is
probably safe to say that the worksample is unidimensional.

(c) Surprisingly, the correlation between age and performance
was positive, .25 (.31 when a correction for restricted age
sampling was employed).

(d) No reliable sex effects were obtained.

Counting Backwards

Scores. As was noted earlier, the Counting Backwards
worksample consists of two essentially identical parts. An
examinee's speed score for each part was the time it took him or
her to complete that part. The number of correct subtractions
for each part was the accuracy score for that part. A speed
score for the complete worksample was computed by adding together
the examinee's speeds on Parts 1 and 2. Similarly, an accuracy
score for the worksample was computed by adding the examinee's
accuracies for Parts 1 and 2. Table 5 presents means and
standard deviations for the dependent measures of the Counting
Backwards worksample.

When, as in counting backwards, the dependent variable is the
time to the completion of a task, a reciprocal transformation is
usually the most appropriate. In addition to reducing the effect
of extreme values, a reciprocal transformation on such data can
be justified theoretically. Cohen and Cohen (1983) wrote:

"Reciprocals arise quite naturally in the consideration of
rate data. Imagine a . . . task presented in time limit
form--all subjects are given a constant amount of time (7).,
during which they complete a varying number of units (w).

One might express the scores in the form of rates as u/T but,
because T is a constant, we may ignore T and simply use u as
the score. Now consider the same task, but presented in work
limit form--subjects are given a constant number of units to
complete (U), and are scored as to the varying amounts of
time (t) they take. Now if we express their performance as
rates, it is U/t and, if we ignore the constant U, we are
left with 1/t, not t. 1If rate is linearly related to some
other variable v, then for the time limit task, v _will be
linearly related to u, but for the work limit task, v will be
linearly related not to t, but to 1/t." (p. 2638-64)

The reciprocal of the speed variable was computed for Parts 1
and 2 of the worksample, as was the sum of the two reciprocals.
Nost of the analyses in this section utilized transformed
scores. So that the relationships between transformed time,
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Table 5

Descriptive Statistics for Counting Backwards Items

Untransformed Transforned1
Score mean SD |ean SD
Part 1
Speed? 1.16 .55 8.93 .49
Accuracy® 12.72 2.19
Part 2
Speed 1.16 .53 8.96 .47
Accuracy 13.15 2.19
Complete worksample
Speed 2.32 1.00 17.89 .90
Accuracy 25.87 3.70

1Transforned speed = 10 - (1/speed).

2Tine to completion in minutes.

sNulber of subtractions completed correctly.
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untransformed time, and other variables were in the same
direction, each transformed score was subtracted froe a constant,
namely, 10. :

Internal gstructure. Analysis of the internal structure of
the Counting Backwards worksample was straightforward. Because
there was no reasonable way to divide each of its two parts into
smaller units, the worksample was viewed as being composed of two
items. Table 6 presents the correlations between the various
scores and subscores. As can be seen, the correlation between
the speed variables was much higher than that between the
accuracy variables (.71 untransformed speed, .77 transformed
speed versus .43 for accuracy). This indicated that, in this
task, speed was a more reliable score than accuracy. In
addition, the stronger relationship between the two halves that
was obtained using transformed speed as compared with
untransformed speed suggested that the transformation was
justified. The alpha reliability for transformed speed was .87
(based on a two-item test with a .77 correlation between the
items).

A composite score based on speed and accuracy was computed by
adding together the standardized scores of the two dependent
measures within each part of the worksample (standardized
transformed speed scores were used for this composite). The
correlation between the two speed/accuracy variables was .48,
much lower than the .77 obtained between the transformed speed
scores of Parts 1 and 2. As a result, it was concluded that
transformed speed alone was, psychometrically, a more appropriate
score than a measure using both speed and accuracy.

Age effects. The correlation between age and total
transformed speed was -.06 (p.< .05), accounting for less than
one percent of the variance of the test. As noted in the
previous section, this is an underestimate because of the
overrepresentation of younger examinees in the sample. When the
correction for restriction of range was applied, the correlation
was -.08. Thus, it appears that the relationship between age and
speed on the Counting Backwards worksample is trivial.

Sex effects. Males took an average of 1.04 minutes to
complete each part of the worksample, while females- took an
average of 1.24 and 1.27 minutes to complete Parts 1 and 2,
respectively. The difference in total transformed time between
the sexes was significant at p.< .001 (an effect size of .86 of a
standard deviation). In addition, men were somewhat more
consistent than women in the time it took them to complete each
of the two parts; the correlation between speed in the two parts
was .72 for women and .77 for men (p_< .001).

Summary. (a) The most appropriate score for the Counting
Backwards worksample was transformed speed.

(b) Alpha reliability of transformed speed was .87.
(c) The relationship between age and transformed speed was
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Table 6

Correlations Within Counting Backwards Worksample

A. Using untransformed speed scores
Total Total

_Score SEeedl1 Accuracyl Speed2 Accuracy2 Speed Accuracy
Speedl
Accuracyl -19
Speed2 71 -27
~ Accuracy?2 -20 43 -28
Total Speed 93 -25 92 -26
Total Accuracy -23 85 -33 85 ~-30
B. Using transformed speed scores
Total Total
__Score Speed1l Accuracyl Speed2 _ Accuracy?2 Speed Accuracy
Speedl
Accuracyl -16
Speed2 717 -27
Accuracy2 -17 43 -26
Total Speed 94 -22 94 -23
Total Accuracy -20 85 -31 85 ~27

Note. N = 1,451. Decimal points omitted. All correlations significant at .001
level.

1'x‘he numbers 1 and 2 at the end of a variable name refer to Parts 1 and 2 of the
worksample.
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statistically significant but negligible.
(d) Men were about one-third of a standard deviation faster
than women for the complete worksample.

Number Reasoning

Scores. The score assigned for each problem in the Number
Reasoning worksample was the time it took to complete that
problem correctly. The maximum time allowed for any particular
problem was .50 minute. The score for the complete worksample
was the sum of the scores of the individual problems. The number
of problems not completed correctly was not sufficient for them
to be discriminated from problems completed correctly in the
maximum time, .50 minute. Examinees not completing a problen
within the allotted time period were assigned a score of .50 for
that problen.

Table 7 presents the means and standard deviations for the
problems (items) in the Number Reasoning worksample. An average
of 9% of the examinees received scores of .50 on any given
problem. As can be seen from Table 7, the average time needed
for the completion of a problem was .192. The average standard
deviation across all the problems was .116. In other words, .50
is on the average 2.66 standard deviations away from the mean of
any particular problem. Thus, roughly 9% of subjects were 2.66
standard deviations away from the mean on any particular problem.

The Number Reasoning and Counting Backwards worksamples were
similar in that both required examinees to complete tasks with
essentially no time 1limit. As noted in the section describing
the results of the Counting Backwards worksample, when the
dependent variable is speed of completion, a reciprocal
transformation of the data is often necessary (Cohen & Cohen,
1983). 1In addition to being theoretically appropriate, this
transformation minimized the effects of the extreme scores
described in the previous paragraph. It should be noted that the
scores for the complete worksample were obtained by summing the
transformed scores of the individual items (and not by
transforaing the sum of the raw scores of the individual items).
So that the relationships between transformed time, untransformed
time, and other variables were in the same direction, each
transformed score was subtracted from a constant, namely, 30.

Internal structure. Part A of Table 8 presents alpha
reliability for the complete worksample. As expected, the
reliability coefficients obtained using transformed scores were
higher than those computed from the untransformed scores. In
other words, interitem correlations were higher for transformed
as compared with untransformed scores. This indicated that the
reciprocal transformation was justified.

Part B of Table 8 displays the corrected item-total
correlations for each item in the worksample. An item-total
correlation is the correlation between examinees' scores on a
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Table 7

Descriptive Statistics for Untransformed Number Reasoning
Items

Nean tile1

Item to completion SD _
b | .230 .149
2 .351 .148
3 .281 .129
4 .149 .095
S .163 .112
6 .192 .122
7 .214 .1385
8 .212 .134
9 .302 .155
10 171 .108
11 .125 .0717
12 .188 .128
138 .117 .076
14 .183 .124
15 .146 .093
16 .145 .094
17 .109 .076
18 .229 .145
Total? 192 .0513

1In fractions of one minute (e.g., .20 minute = 12
seconds).

2The transformed total score was 22.16, with a
standard deviation of 2.18.

sThis is the SD of examinees' means, not the mean of
the SDs across all the problems (which is .116).
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particular item and the total score for each examinee across all
the items. It describes the degree to which an individual item
fits the test; e.g., the degree to which the item measures the
same latent trait that is measured by the other items on the
test. The higher the item-total correlation, the better an itenm
fits the test. Good-fitting items increase a test's reliability,
while poorly fitting items tend to decrease reliability or to add
very little to reliability; i.e., removal of a good item
decreases the reliability of a test, while removal of a bad item
increases reliability or leaves it the same.

None of the items of the Number Reasoning worksample had
seriously low item-total correlations. However, Problems 1, 2,
8, 9, and 18 displayed relatively low item-total correlations.
Reliability was also computed with individual items excluded in
turn from the analysis. Other than for item 18, all such
analyses resulted in decreased reliability coefficients.
Excluding Problem 18 did not bring about any change in the
worksample's reliability. In other words, while Problem 18 was
not a good problem, including it in the worksample did not
detract from the test. It is probable that Problem 18's lack of
fit was due to its position on the worksample rather than to its
content. If examinees were provided with cues that this was the
final item, they may have approached it differently than they did
the other items (e.g., by expending less effort). As a result,
this problem may have measured a motivational variable (e.g.,
willingness to "slack off" at the end of a task) in addition to
the trait measured by the other problems. Whenever a particular
item measures an attribute that is not measured by most of the
other items, its contribution to the test's overall reliability
is expected to be relatively small or negative.

While Problem 18 was the only problem that contributed
nothing to the worksample's reliability, Problems 1, 2, 8, and 9
contributed relatively little. The contribution of the first two
problems to the reliability of Number Reasoning was probably
limited regardless of their content. Since Number Reasoning was
not a task that examinees were expected to have encountered
before their testing at the Foundation, the first problenms
probably measured how well examinees were learning the task, as
well as how good they were in manipulating numbers. As noted
above, a problem measuring a variable that other problems do not
measure contributes little to overall reliability. However, the
relatively low item-total correlations of Problems 8 and 9
indicated that they may not have been good itenms.

The moderately good alpha reliability of the Number Reasoning
(.84) suggested that this worksample was unidimensional--in other
words, that it primarily measured a single attribute, or latent
trait, of the examinee. This was confirmed by factor analysis.
Initial principal axis factoring of the item correlation matrix
vielded three factors with eigenvalues greater than 1.0.

However, the eigenvalue of the first factor was more than four
times the size of each of the two subsequent factors (the
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Table 8

Reliability Statistics for Number Reasoning Worksample

A. Reliability coefficients for complete worksaaple.

Alpha reliab:llity1

Untransforaed Transformed
items items
.74 .83

B. Correctedz'3 item-total correlationq.

Corrected item-total

Iten correlation
1 .30
2 .32
3 .45
4 .51
5 .45
6 .40
7 .44
8 .30
9 .31

10 .51
11 .43
12 .44
13 .46
14 .40
15 .46
16 .46
17 .55
18 .28

1Nonstandardized alpha.

8Based on transformed times.

aThe time an examinee took to complete a particular
item is excluded from the total for that item.
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eigenvalues for the first three factors were 4.71, 1.14, and
1.02, respectively). This indicated that a one-factor solution
was optimal for this worksample. Table 9 presents the loadings
of the findividual items in the one-factor solution. It should be
noted that, as expected, the lowest loadings were displayed by
those items that contributed least to the worksample's
reliability.

Age effects. Table 10 presents a breakdown by age of the
average time it took examinees to complete the worksample. Older
examinees took, on the average, more time to complete the
worksample. The correlation between age and average time to
completion was .20 (p < .001). This indicated that only about 4%
of the variance in time was explained by age. As noted in the
previous section, this figure is artificially low because of the
overrepresentation of younger examinees in this worksample. When
a correction for the restriction of range was employed, the
correlation between age and performance increased to .25.

Sex effects. Males and females did not significantly differ
in their performance on the complete worksample. They differed
significantly on only one of the 18 problems in the worksample
(males took longer to complete Problem 10; t < .05). This result
was about what would have been expected by chance.

Reliability and factor analyses done separately for each of
the sexes yielded results that were essentially the same as those
obtained for the complete sample. 1In other words, the internal
structure of the worksample did not differ between the two sexes.

Susmary. (a) The most appropriate score for the Number
Reasoning worksample was examinees' transformed time.

(b) Using transformed time, the reliability of this
worksample was moderately good, .84.

(c) Problems 8 and 9 displayed low item-total correlations
and should probably be replaced. Other low item-total
correlations were likely caused by the problems' position in the
worksample rather than by their content. Test administrators
should be careful not to give examinees cues regarding the length
of the worksample.

(d) The correlation between age and performance was .20 (.25
when a correction for restriction of range was employed).

{e) No reliable sex effects were encountered in the
worksample.

Rule Learning

Scores. As described earlier, the Rule Learning worksample
was divided into 10 subtests. The subtests were classified into
three categories: Induction, Practice, and Application. An
examinee's score for a particular subtest consisted of the number
of items he or she answered correctly within that subtest.

Scores for each category were obtained by adding together the
scores of the subtests within that category. While scores were
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Table 9
Loadings of Individual Ite-s1 n Primary Factor
~ of Number Reasoning Worksample
Item Loading
1 .33
™ 2 .85
] .51
4 .57
5 .81
.y 6 .44
7 .49
8 .33
9 .35
- 10 .57
11 .48
12 .49
13 .51
14 .44
™ 15 .50
16 .61
17 .61
18 .81
™ 1
Transformed item scores were used for the
factor analysis,
2The primary factor displayed an eigenvalue
of 4.71, accounting for 26.1% of the variance
- in the worksample.
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Table 10

Nean Untransformed Completion Time per Item by Age
Interval for Number Reasoning

Age interval

Nean minutes
to completion

13-15
16-18
19-21
22-24
25-27
28-30
31-33
34-36
37-89
40-42
43-45
46-48
49-51
52-54
55-57
58-61

Total

.190
.184
-178
.195
.190
<177
.196
.200
. 207
.202
. 207
.210
212
.271
.228
.1895

.192

24
222
199
170

99
108

90

77

75

61

49

38

25

10

11

1,266
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obtained for all 10 subtests and for the three categories, it was
expected that the scores for the Application subtests would be
the most meaningful. Table 11 presents the means and standard
deviations for each of the subtests and for each of the
categories.

Internal structure., Because it was anticipated that the
Application category would be the most meaningful, its internal
structure is reported first and in the greatest detail.

The Application category. As was expected, no examinee
attempted all of the problems within the Application category.

To derive alpha in the usual manner (at the item level), it was
necessary to treat problems that were not attempted in the same
manner as problems that were completed incorrectly. As noted in
the section describing the Arithmetic results, this was expected
to lead to an inflated reliability coefficient. An alpha of .95
across all the subtests was obtained when this procedure was
used.

Two alternative estimates of alpha were also utilized. For
the first, only those items in each Application subtest that were
completed by 75% or more of the examinees were used to derive
alpha. This yielded an alpha reliability of .89. The second
method treated each subtest within Application as an item on a
four-item test. Alpha was then conputed using the formula
described in the section reporting the results of the Arithmetic
worksample. Given an average intersubtest correlation of .65,
this procedure yielded an alpha of .88. Since the two
alternative procedures produced similar alphas, it is reasonable
to assume that Application's alpha is in the vicinity of .90.

As noted in the section describing the Arithmetic worksample,
a high alpha indicates that a test is probably unidimensional.
Item-level analyses were used to investigate this issue further.
As noted above, this presented a problem because so many of the
items were not completed. Consequently, only items completed by
at least 75X of the examinees were examined. Table 12 presents
item-total correlations for these problems. In addition,
reliability coefficients were computed with individual items
excluded in turn from each analysis.

Items Bl and D1, two problenms displaying relatively low
item-total correlations, also brought about slight reductions in
alpha. (Because the number of items included in this analysis was
relatively large, each item had a negligible overall effect on
the reliability. Thus, reductions in alpha could only be
detected at the third decimal place.) Both these problems had
the lowest item-total correlations within their respective
subtests. It is important to note that each of these problenms
was also the first in its respective subtest. Similarly, Al and
Cl1 displayed relatively low item-total correlations (second from
the lowest in their respective subtests). Other problems having
low item-total correlations were generally found at the end of
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Table 11

Descriptive Statistics for Rule Learning Subtests

X of examinees
answering all

No. Mean problenms
Subtest problems correct SD correctly
Induction A 10 8.82 2.57 76.5
Induction B 10 7.99 3.83 63.5
Induction C 10 8.38 2.78 61.2
Total Induction 30 23.77 7.08 32.9
Practice A 10 9.54 1.52 87.3
Practice B 10 9.51 1.43 84.5
Practice C 10 9.28 1.60 765.3
Total Practice 30 28.09 3.68 60.8
Application A 20 11.03 4.69 3.2
Application B 13 5.85 3.18 1.1
Application C 20 9.00 3.50 0.2
Application D 13 4.75 2.48 0.0
Total Application 66 30.36 12.12 0.0
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Table 12

Item-Total Correlations for Application Problens1

Corrected item-

Item total correlation
Al .35
A2 .40
A8 .55
Ad .36
A5 .52
A8 .48
A7 .47
A8 .43
A9 .22
Al0 .44
B1 .30
B2 .40
B3 .55
B4 .49
B5 .43
B6 .60
B7 .34
Ci .42
c2 .48
c3 .47
C4 .50
CcS5 .51
Cé6 .51
c7 .51
cs8 .80
ce .29
D1 . .31
D2 .49
D3 .53
D4 .89
DS .58

1An individual item was included only if 75%

or more of the examinees completed it.
Altogether, 684 examinees, or 47.1%, completed
all 31 items. This table is based on these 684
examinees.

zThe score for an examinee on a particular
item is excluded from the total with which that
item is correlated.
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each subtest (end refers only to problems included in Table 12;
i.e., these problems were the last problems completed by many
examinees, but they were not actually the last problems within
their respective subtests). This indicated that it was probably
these problems' positions in the subtest, rather than their
content, which caused them to be relatively bad iteams.

Table 13 presents the results of factor analysis using only
those problems completed by 75% of the examinees. Principal axis
factoring initially extracted seven factors with eigenvalues
greater than one. The first factor accounted for 27.3% of the
variance in the test, while the second accounted for 6.9%. None
of the remaining factors accounted for more than 5% of the
varliance in the test. As a result, it was concluded that a
one-factor solution was the most appropriate for the Application
category. The loadings of the individual items on this first
factor are displayed in Part A of Table 13. In general, items
that were placed at the beginning and end of each subtest
displayed lower loadings than those in the middle of the subtest.
This was expected since these items displayed relatively low
item-total correlations.

It is important to note that, in general, in the one-factor
solution, items did not tend to "hang together" by subtest. In
other words, problems from all the subtests could be found in the
higher and lower ranges of factor loadings. This indicated that
while the subtests were physically separated in the worksanmple,
they measured the primary factor about equally. While problems
from all the subtests could be found throughout Part A of Table
14, there did appear to be a slight overrepresentation of items
from APL-C and APL-D in the higher range of loadings (and
consequently an overrepresentation of APL-A and APL-B in the lower
range). This was not surprising in light of the hypothesized role
of "automatization" in the Rule Learning worksanple (see
Introduction). :

Based on the results of the reliability and the one-factor
factor analysis, it was hypothesized that "position" factors might .
emerge in a two-factor solution. That is, one factor would
contain items primarily from the extremes of each subtest, while
the other would contain items primarily from the center. Part B
of Table 14 presents the results of the rotated two-factor
solution. The hypothesized position factor did not emerge in this
solution. However, it can be observed that the first factor
contained all the APL-D items and all but one of the APL-B items
(the only item from APL-B in the second factor displayed the
lowest loading of any item on that factor and loaded almost
equally on the first factor). It should be remembered that APL-B
and APL-D contain complex items, while the other two subtests
contain relatively simple items. However, since (a) the
one-factor solution is optimal, and (b) the separation in the
two-factor solution between the simple and complex problems is not
clear cut (i.e., Factor 1 contains nine items from subtests APL-A
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Table 18

Factor Lo;dinga of Application Items Completed by at Least 75% of

Examinees’
A. One-factor solution B. Two-factor solution2
Iten F1l Itenm F1 F2
A3 .66 B6 .69 .19
D5 .64 D5 .65 .25
B6 .82 D2 .63 .08
AS .61 D6 .81 .20
D3 .61 D3 .58 .28
CcS .61 B3 .51 .22
C4 .58 BS .53 .11
c3 .57 B2 .41 .06
Dé .57 A7 .44 .19
B3 .56 Al .42 .09
c2 .56 o ] .41 .33
cs .54 c17 .41 .29
B4 .53 A6 .89 .32
Cé .52 cs .38 .38
Al0 .52 B4 .38 .36
A6 .51 A8 .35 .29
C7 .50 C1 .31 .29
D2 .50 D4 .31 .31
A2 .46 D1 .29 .18
BS .45 B7 .29 .24
A8 .45
A7 .45 A3 .22 .74
D4 .44 C4 .19 .65
C1 .43 Al0 .12 .64
A4 .42 Cc3 .20 .62
B2 .88 AS .28 .89
B7 .88 C5 .30 .56
Al .36 c2 .25 .55
c9 .83 A4 .14 .47
D1 .33 A2 .21 .45
B1 .81 c9 .09 .38
A9 .27 A9 .05 .34
B1 .22 .23
1

Principal axis factoring. Item D6 was included in factor
analysis although it was completed by only 61.4% of examinees.

2Varilax rotation.
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Table 14
Correlations Among Subtests of Rule Learning Worksample

A. Correlations among subtests

Subtest IND-Al  IND-B IND-C PRA-A PRA-B PRA-C APL-A ___ APL-B APL-C___ APL-D
IND-A

IND-B .18

IND-C .16 .24

PRA-A .40 .13 .15

PRA-B .13 .26 .21 .18

PRA-C .16 .19 .38 .19 .33

APL-A .17 .17 .28 .17 .24 .42

APL-B .16 .19 .27 .16 .19 .39 .60

APL-C .19 .22 .30 .21 .25 .42 .71 .66

APL-D .14 .20 .25 .16 .19 .31 .52 .75 .63
B. Correlations among subtest composites2

Subtest IND PRA APL

IND

PRA .33

APL .39 .21

1The first three letters refer to the the type of problem set (IND = Induction, PRA = Practice,
APL = Application) and the last letter to the subset within the problem type.

2Each composite is calculated by adding up the number of correct problems across all the
subtests within a problem type.
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and APL-B), a distinction between complex and simple problems is
not Jjustified.

The complete worksample. As noted in the section describing
the numerical facility worksamples, the Induction and Practice
categories were meant as a necessary introduction to the more
important Application category. As such, they were not intended
as tests whose scores would be used in measuring numerical
facility. Nevertheless, it is useful to examine the internal
structure of these categories and their relationship to the
Application category.

Almost all of the items in the Induction and Practice
categories that were attempted were answered correctly (.95 and
.98 for Induction and Practice, respectively). Consequently, as
in the case of the Arithmetic worksample, it was not appropriate
to estimate reliability at the item level. However, an estimate
of reliability could be obtained by treating the various subtests
as items. Using this strategy, the alpha reliability of the
Induction category was .42, and that of the Practice category was
.48.

As was expected, the reliability of the Induction and
Practice categories was not high. Even more instructive were the
correlations between all the subtests presented in Part A of
Table 14. Subtests in the Induction and Practice categories
tended to correlate about equally as well within their respective
categories as with subtests of the other categories.

Furthermore, each of the Induction subtests displayed its highest
correlation with subtests in Practice: IND-A correlated highest
with PRA-A, IND-B with PRA-B, and IND-C with PRA-C. All of the
above suggested that the problems within the first two categories
measured the same construct.

The subtests within Application displayed generally much
higher correlations with each other as compared to their
correlations with the other subtests. This indicated that the
Application subtests measured the same construct, and that this
construct was not measured, or not measured as well, by the
problems in the first two categories. This was confirmed by
factor analysis. Table 15 presents the results of factor

analyses conducted on the correlation matrix in Part A of Table
14.

Principal axis factoring yielded three factors with
eigenvalues greater than 1.0 (3.60, 1.37, 1.09). The relative
size of these three factors indicated that a one-factor solution
was optimal. This solution is presented in Part A of Table 15.
As can be seen, the four highest loading subtests all come from
Application. Furthermore, the differences in loadings among the
Application subtests were much smaller than those between the
Application and the other subtests. This suggested that although
all the subtests primarily measured the same construct,
Application measured this construct best.
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T

Factor Analyses of Rule Learning Subtests

able 15

1

A. One-factor solution
Subtest Factor 1
APL-C .8117
APL-B .795
APL-D .736
APL-A .731
PRA-C .503
IND-C .388
PRA-B .305
IND-B .282
IND-A .262
PRA-A .262
B. PFactor loadings for rotated2 three-factor solution
Subtest Factor 1 Factor 2 Factor 3
APL-B .8417 .172 .092
APL-D .766 171 .084
APL~-C .746 .314 .115
APL-A .650 .312 .097
PRA-C .278 .532 .104
IND-C .156 .513 .093
PRA-B .109 .415 .071
IND-B .104 .332 .150
IND-A .068 .139 .684
PRA-A .089 .148 .541
1

Initial extraction using principal axis factoring.

Varimax rotation.
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While the three-factor solution was not optimal, it is
presented in Part B of Table 15 to lend additional support to the
point made above. As can be seen, all the primary subtests of
FPactor 1 came from Application. However, the primary subtests of
Factors 2 and 3 came in equal parts from Induction and Practice.
In other words, Application measured the first factor best, while
Induction and Practice measured it equally poorly.

Age effects. Table 16 presents a breakdown by age of
examinees' scores on the Application worksample. In general, the
older the examinee the lower the score. The correlation between
age and performance on Application was -.31 (p < .001). As noted
in earlier sections, this is an underestimate because of the
overrepresentation of younger examinees. When a correction for
restriction of range was applied, this correlation increased to
~-.40,

Sex effects. Females significantly outperformed males on the
Application category by .13 of a standard deviation (female
M = 31.30, male M = 29.72; p < .05), a relatively small
difference. There were no significant differences between the
performance of males and females on the Induction and Practice
categories.

There did not appear to be any significant differences in the
correlations between subtests for males and females. The
correlations between the subtests in each category were similar for
the two sexes. Thus, the reliability of the Application category
was similar for the two. The correlations between the categories
were similar for the two sexes as well. All of the above indicates
that the internal structure of the complete worksample and of the
individual categories did not differ between the sexes.

Summary. (a) The score that should be used from this
worksample is examinees' total score on the Application category.
While the construct measured by Induction and Practice was similar
to that measured by Application, the first two did not measure this
construct nearly as well as the latter.

(b) The reliability of Application was high, about .9.

{c) The Application problems were unidimensional.

(d) On the average, younger examinees performed better than
older ones. The correlation between age and performance on
Application was -.31 (-.40 when corrected for restriction of
range).

(e) Females outperformed males on Application by .13 of a
standard deviation.

(f) The correlations within and between categories did not
differ for the two sexes.

The Numerical Facility Battery

The previous sections examined the internal structure of the
four experimental worksamples in the numerical facility battery.

317



Table 16

Number of Application Items Answered Correctly by Age

Age interval No. correct N
13 - 156 31.30 24
16 - 18 34.33 222
19 - 21 35.34 199
22 - 24 31.89 170
25 - 217 30.177 99
28 - 30 32.82 108
31 - 338 28.34 90
34 - 36 25.99 77
37 - 39 27.84 75
40 - 42 24 .23 61
43 - 45 23.82 49
46 - 48 22.74 38
49 - 51 21.48 25
$2 - 54 17.40 10
6§56 - 57 18.517 11
58 - 611 17.75 8

Total sample 30.50 1,266

1No 60-year-olds took the worksample.
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It was demonstrated that each of the worksamples displayed two
essential features of psychometrically sound measures. First,
each was found to be relatively consistent internally, with
reliability estimates ranging between .83 for Number Reasoning
and .90 for Rule Learning. Second, each of the worksamples
appeared to be unidimensional (i.e., measuring primarily one and
only one latent variable).

The next issue that needs to be addressed is the structure of
the numerical facility battery as a whole. In the same way that
each worksample was assessed by examining the pattern of
correlations among the items within the worksample, the structure
of the battery was assessed by examining the pattern of
correlations among the worksamples within the battery.

As noted in the Introduction, the Johnson O'Connor test
battery already contained the Number Series worksample, a measure
hypothesized to be related to measures of numerical facility. In
order to assess the degree of this relationship, most of the
analyses described in this section included examinees' scores on
Number Series along with their scores on the four tests of the
numerical facility battery. In other words, Number Series was
considered a part of the numerical facility battery for the
purposes of most of the statistical analyses described in this
section. The reliability of the Number Series worksample is
-87. A more detailed description of the Number Series worksample
and its internal structure can be found in the Number Series test
manual.

Part A of Table 17 presents the zero-order correlations
(simple Pearson coefficients) among the five numerical facility
worksamples. As was noted in the introduction, Arithmetic has
traditionally been the marker test for the numerical factor.
Arithmetic correlated highest with Counting Backwards and lowest
with Rule Learning. Arithmetic's low correlation with Rule
Learning (.22) suggested that the two tests tended to measure
different latent traits. Rule Learning also displayed a low
correlation with Counting Backwards (.28). This was not
surprising in light of the latter's strong relationship to
Arithmetic.

Rule Learning displayed relatively strong relationships with
Number Reasoning and Number Series, which, in turn, correlated
only moderately with Arithmetic. This pattern of relationships
suggests that, while all the worksamples of the battery shared
some variance, there appeared to be two somewhat distinct types
of problems in the battery. One type primarily involved simple
computation (Arithmetic and Counting Backwards), while the other
required a degree of reasoning as well (Rule Learning, Number
Reasoning, and Number Series).

However, there was reason to believe that the correlations in
Part A of Table 17 were influenced by spurious factors. This
experimental battery was intended to measure numerical facility.
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Table 17

Correlations Among Numerical Facility Worksamples

A. Zero-order correlations
Counting Number Rule Number

Worksample Arithmetic Backwards Reasoning Learning Series
Arithmetic
Counting 49

Backwards
Number 34 34

Reasoning
Rule Learning 22 28 43
Number Series 32 35 34 42

B. Correlations with sex and age partialled out

Counting Number Rule Number

Worksample Arithmetic Backwards - Reasoning Learning Series
Arithmetic
Counting 50

Backwards
Number 42 38

Reasoning
Rule Learning 34 37 39
Number Series 35 36 34 43

Note. Ns = 1,244 for Part A and 1,242 for Part B. Decimal points omitted.
All correlations significant at .001 level.
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Consequently, only the shared “numerical facility variance" of
these worksamples is of interest in this study. Differential
correlations with age and sex (or any other variables that are
not intended to measure numerical facility) are attributable to
these worksamples' unique, nonnumerical components rather than to
their shared variance. Partialling out this unique variance
should provide a clearer picture of the interrelationships of
these worksamples as they relate to numerical facility.

As was reported in earlier sections, all four experimental
numerical facility worksamples displayed correlations with age
that differed significantly from chance (p_< .05). On the
average, older examinees did not perform as well as younger ones
on all but the Arithmetic worksample, where this relationship was
reversed. The correspondence between age and performance on Rule
Learning was especially strong (-.31; ~-.40 when a correction for
the restriction of range was employed). Some sex differences
were also present in this battery. Males and females
significantly differed in their performance on Rule Learning and
Counting Backwards. On the average, females outperformed males
on Counting Backwards, while the reverse was true for Rule
Learning.

In order to control for sex and age, these variables were
partialled out of examinees' scores on the various worksamples.
The results of this procedure are displayed in Part B of Table
17. As can be seen, all but one of the coefficients were
increased. The two relatively weak correlations involving Rule
Learning were replaced by moderate correlations. Furthermore,
the initial hypothesized distinction between computational and
reasoning worksamples was blurred. While Counting Backwards and
Arithmetic still displayed a strong relationship, the
correlations among the reasoning tests did not tend to be
stronger than those between the reasoning and computational
tests.

It should be noted that the correlations resulting from the
partialling of age alone were very similar to those displayed in
Part B of Table 17 (which resulted from the partialling of age
and sex). In other words, age was the variable that was
primarily responsible for the discrepancies between the two
matrices displayed in Table 17.

Table 18 presents the results of factor analyses of the
correlation matrices in Table 17. In both analyses only one
factor with an eigenvalue greater than one emerged. Thus, while
a possible distinction between computational and reasoning tests
emerged from the examination of the zero-order matrix, this
distinction was not strong enough to produce a two-factor
solution. Arithmetic's loading on the primary factor increased
perceptibly after age and sex were partialled out. The other
worksamples displayed similar loadings in both parts of Table
18. The primary factor in Part A of Table 18 explained slightly
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Table 18

Factor Loadings of Numerical Facility Worksamples
Including Number Series

A. Factor analysis1 of zero-order correlation matrix
Worksample Factor 12
Counting .62
Backwards
Number .62
Reasoning
Nuamber .60
Series
Arithmetic .57
Rule .57
Learning

B. Factor analysis of partialled3 correlation matrix

Worksample Factor 1%
Counting .66
Backwards
Arithmetic .66
Number .61
Reasoning
Rule .60
Learning
Number .58
Series

Note. Ns = 1,244 for Part A and 1,242 for Part B.
1Factor analyses used principal axis extraction.
2Accounted for 48.3% of variance.

3Partialled for sex and age.

4Accounted for 5§1.1% of variance.
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less variance than the primary factor in Part B of that table.
This was a consequence of the generally lower correlations in the
zero-order matrix as compared with the partialled matrix.

Table 19 presents the results of factor analyses that
excluded Number Series. Generally, these did not differ greatly
from the analyses presented in Table 18. The exception to this
was Rule Learning, which displayed a comparatively low loading in
the factoring of the zero-order correlation. While this loading
was boosted when the partjialled matrix was factored, it remainecd
the lowest among the four worksamples. Rule Learning's slightly
higher loadings in the presence of Number Series were a function
of its relatively high correlation with that worksample (.43
after age and sex were partialled out). This may in fact have
been due to a reasoning component that the two worksamples shared
with each other but not with the other worksamples. However, the
differences between the factor analyses that included Number
Series and those that did not were too small to be of any
practical significance.

Summary

(a) All the worksamples in the numerical facility battery
were reliable.

(b) The numerical facility battery was unidimensional (even
with the inclusion of Number Series).

{(c) Age and sex suppressed some of the correlations between
the worksamples in the battery. Once these variables were
partialled out, the battery appeared more cohesive.

The Numerical Facility Battery and its Relationship
to the Rest of the JOCRF Battery

The results reported in the previous section demonstrate that
the worksamples of the numerical facility battery measure
primarily one factor. This section will assess whether this
factor is unique to the worksamples of the numerical facility
battery or whether it is also measured by other worksamples in
the JOCRF battery. Most of the analyses reported in this section
used scores that were corrected for sex and age effects {see
previous section for rationale).

Numerical Facility and the Cognitive Worksamples

Table 20 presents the correlations of the numerical facility
worksamples with the cognitive tests of the JOCRF batterv. Of
the five numerical facility worksamples, Arithmetic showed the
lowest average correlation with the cognitive worksamples (.14).
In other words, Arithmetic was the most discriminantly valid of
the numerical facility worksamples (with respect to the cognitive
tests of the JOCRF battery). Rule Learning displayed the lowest
discriminant validity; on the average, it correlated highest with
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Table 19

Factor Loadings1 of Numerjcal Facility Worksamples
Excluding Number Series

A. Factor analysis of zero-order correlation matrix2
Worksample Factor 13
Counting .65

Backwards
Number .62

Reasoning
Arithmetic .60
Rule .50

Learning

B. Factor analysis of correlation matrix partialled for sex and age4

Worksample Factor 1%
Arithmetic .69
Counting .68
Backwards

Number .61
Reasoning

Rule .55
Learning

1Principal axis factoring.

2y = 1,244.

3Accounted for 51.3% of variance in battery.

N = 1,242.

5Accounted for 55.1% of variance in battery.

44



Table 20

Correlations Between Numerical Facility Worksamples and Cognitive Worksamples
of JOCRF Battery

Cognitive worksamples

Numerical facility Graph-~ Idea- Fore- Ind. Ana. Wiggly
worksamples oria phoria sight Reas. Reas. Block
Arithmetic 47 15 09 08 11 01
Counting Backwards 31 12 09 14 25 19
Number Reasoning 35 18 13 27 35 22
Rule Learning 34 18 13 27 33 32
Number Series 27 17 15 16 36 32

Cognitive worksamples

Numerical facility Paper Mem. Silo- Number Obser- Avg.
worksamples Folding Design grams Memory vation corr.
Arithmetic 04 06 22 28 07 14
Counting Backwards 24 21 25 35 13 21
Number Reasoning 24 23 19 30 14 24‘
Rule Learning 39 38 27 38 29 30
Number Series 39 33 31 34 13 27
Note. N = 1,134. All decimals omitted. .08 < r < .11 is significant at the

1,
.01 level; r > .11 is significant at the .001 level.
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the other cognitive tests (.30). Number Series also demonstrated
a relatively high average correlation with the other cognitive
tests (.27).

Examining Table 20, one can see that all the numerical
facility worksamples correlated moderately with Graphoria. While
the correlation with Graphoria was not initially predicted, it
was not surprising. First, the Graphoria worksample uses
numbers. Second, Graphoria is a test of perceptual speed. It
was noted in the Introduction that the Number factor has been
found to correlate substantially with the Perceptual Speed
factor. The correlation pattern between Graphoria and the
numerical facility worksamples suggests that a perceptual
component may have been responsible, in part, for this result.
Graphoria correlated higher with the three worksamples requiring
more perceptual speed (.46, .35, and .34, with Arithmetic, Number
Reasoning, and Rule Learning, respectively), as compared with
those requiring less perceptual speed (.31 and .27 with Counting
Backwards and Number Series, respectively). However, the fact
that Graphoria demonstrated a moderate correlation with Counting
Backwards, a worksample with no apparent perceptual demands,
indicated that perception alone could not completely explain
Graphoria's relationship to the Number factor.

All the numerical facility worksamples also correlated
moderately with Number Memory. This too was not surprising,
because the ability to process numbers in short-term memory is
common to most numerical tasks, including Number Memory.

The relatively high average correlations displayed by Rule
Learning and Number Series are primarily due to these
worksamples' correlations with the reasoning and spatial tests.
Rule Learning correlated .33 with Analytical Reasoning and .27
with Inductive Reasoning., while Number Series correlated .36 with
Analytical Reasoning. 1t should be noted that Number Reasoning
also displayed moderate correlations with the two reasoning
worksamples (.35 and .27 with Analytical Reasoning and Inductive
Reasoning, respectively). Both Rule Learning and Number Series
averaged .36 correlations with the two spatial tests, Wiggly
Block and Paper Folding.

Table 21 presents a factor analysis of the cognitive
worksamples in the Johnson O'Connor battery, including the
worksamples of the experimental numerical facility battery. Five
factors with eigenvalues larger than one emerged (5.2, 1.8, 1.5,
1.2, 1.1). Because of the relative sizes of the eigenvalues,
this would have typically resulted in a one- or two-factor
solution, However, the current study was less concerned with the
ideal factorial solution than with the relationships among the
various worksamples. Specifically, it was interested in whether
the numerical facility worksamples “hang together" when pooled
with other aptitude tests. It is for this reason that all five
factors are reported in Table 21.
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Table 21

Rotated Pive-Factor s«:lgtion1

for Worksamples in JOCRF Battery

Worksample F1 F2 F3 F4 F5
Arithmetic .84 -.08 .06 .07 .01
Counting Backwards .58 .18 .18 .15 .00
Graphoria .53 .00 .07 .14 .22
Number Reasoning .52 .23 .12 .10 .22
Rule Learning .44 .36 .11 .27 .20
Number Series .41 .38 .29 .17 .00
Paper Folding .09 .79 .13 .17 .03
Wiggly Block .06 .68 .02 .12 .16
Memory for Design .08 .51 .08 .49 .06
Analytical Reasoning .15 .40 .32 .20 .28
English Vocabulary .08 .15 .88 .10 .00
Reading Efficiency .18 .11 .58 .11 .21
Foresight .09 .04 .27 .03 .25
Number Memory .32 .17 .11 .64 .01
Silograms .17 .08 .32 .59 .02
Observation .05 .21 .06 .46 .20
Inductive Reasoning .09 .23 .12 .10 .60
Ideaphoria .16 -.03 .28 .02 .30
1Principal axis factoring with varimax rotation (N = 1,136).
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Table 21 shows that the numerical facility worksamples
remained together even when factored with the other cognitive
JOCRF worksamples. As expected, the worksample with the largest
loading on the Number factor was Arithmetic. In addition to the
five numerical facility worksamples, Graphoria also emerged as a
major test on this factor. The relatively strong relationship
between Graphoria and the numerical facility worksamples was
dealt with earlier in this section.

It is very important to note that, at the same time that the
numerical facility worksamples generally did not load on other
factors, other worksamples generally did not load on the Number
factor. This suggests that the moderate correlations between the
numerical facility worksamples and some of the other cognitive
tests were primarily due to individual worksamples' unique
variance and not to the variance that the numerical facility
worksamples share with one another. The Number Memory worksample
was an exception to this, displaying a moderate loading on the
Number factor (.32).

The rotated solution in Table 21 indicates that Arithmetic,
Counting Backwards, Graphoria, and Number Reasoning tended to
load almost exclusively on the Number factor (none demonstrate a
loading higher than .23 on any other factor). Rule Learning and
Number Series displayed moderate loadings on F2 (.36 and .38,
respectively), a Spatial factor.

It is known from previous research done at the Foundation
(Technical Report 1983-2) that Graphoria generally does not
correlate strongly with the other aptitude tests. Consequently,
Graphoria has always been viewed as a singlet--a test that stands
alone among the other aptitude tests. There is generally little
utility in including singlets in factor analyses. Table 22
presents the results of a factor analysis that excluded
Graphoria. As in the first factor analysis, the numerical
facility worksamples remained together. Also as in the earlier
solution, Arithmetic, Counting Backwards, and Number Reasoning
appeared to measure numerical facility exclusively, while Rule
Learning and Number Series loaded moderately on the Spatial
factor.

There is no readily available explanation of why Rule
Learning and Number Series correlated with the Spatial factor
while the other numerical facility worksamples did not. It is
possible that the two tests, due to their strong reasoning
component, demanded the use of a greater number of aptitudes as
compared to the other numerical facility worksamples. Some
support for this hypothesis can be found by observing the
loadings of the numerical facility worksamples on factors three
through five. While none of the numerical facility worksamples
load highly on these factors, Rule Learning and Number Series
demonstrated generally higher loadings than the other numerical
facility worksamples. Indeed, Rule Learning and Number Series
loaded highest of all the numerical facility worksamples on F4 (a
Memory factor) and F3 (a Verbal factor), respectively.
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Table 22

Rotated Five-Factor §91ution1

Excluding Graphoria

for Worksamples in JOCRF Battery,

Worksample F1 F2 F3 F4 FS
Paper Folding .79 .11 .13 .17 .03
Wiggly Block. .67 .08 .02 .18 .17
Memory for Design .51 .08 .08 .49 .06
Analytical Reasoning .39 .16 .32 .20 .30
Arithmetic .11 .81 .06 .09 .04
Counting Backwards .16 .60 .16 .16 .03
Number Reasoning .20 .52 .13 .11 .25
Rule Learning .34 .44 .12 .28 .21
Number Series .36 .43 .28 .18 .02
English Vocabulary .15 .10 .87 .10 .02
Reading Efficiency .11 .16 .59 .12 .24
Foresight .03 .08 .29 .04 .24
Number Memory .16 .32 .10 .65 .00
Silogranms .08 .16 .32 .59 .01
Observation .21 .04 .08 .46 .20
Inductive Reasoning .22 .07 .14 .10 .62
Ideaphoria .04 .15 .29 .03 .29

1Principal axis factoring with varimax rotation (N = 1,136).
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Numerical Facility and Noncognitive Worksamples

Table 23 displays the average correlations between the
worksamples of the numerical facility battery and the 11
noncognitive worksamples of the JOCRF battery. The tests of the
numerical facility battery generally displayed low correlations
with these worksamples. The correlation between Mathematics
Vocabulary and the numerical facility worksamples is given
separately. It was expected that Mathematics Vocabulary would
display relatively large correlations with numerical facility
worksamples.

As can be seen from Table 23, the numerical facility
worksamples generally displayed low correlations with the
noncognitive worksamples of the JOCRF battery. Rule Learning and
Number Series showed the highest average correlations, as they
did with the cognitive worksamples.

Predicting Numerical Facility Scores From Scores on the Other
Worksamples

It has been shown in previous sections that: (a) each
numerical facility worksample measures primarily a single
construct, and (b) all the numerical facility worksamples
primarily measure the same construct. Points (a) and (b) suggest
that the numerical facility battery is psychometrically sound.
However, they do not address the question of whether examinees'
numerical facility scores could be obtained more efficiently--
that is, without having to administer the numerical facility
battery.

The relatively low correlations between the numerical
facility worksamples and the other worksamples of the JOCRF
battery suggest that the construct measured by the numerical
facility battery is unique to that battery. In other words, it
suggests that numerical facility scores cannot be obtained from
scores on the other worksamples. However, the moderate
correlations between some numerical facility worksamples and
other worksamples indicate that some overlap exists between the
numerical facility construct and those constructs that are
measured by the rest of the JOCRF battery.

To address the question of overlap between numerical facility
and nonnumerical facility worksamples, each numerical facility
worksample was regressed on all the other worksamples in the
JOCRF battery. Table 24 presents the results of these regression
analyses. In order to obtain additional information, the
nonnumerical facility tests (independent variables) were entered
into the analysis hierarchically in four steps: (a) cognitive
tests excluding Graphoria, (b) noncognitive tests, (c) Graphoria,
and (d) Mathematics Vocabulary.

Several interesting results emerged from the regression
analyses. First, as was expected, the greatest overlap between
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Table 23

Relationahipg Between Numerical Facility Battery and

Noncognitive Worksamples in JOCRF Battery

Numerical facility Avg. corr.2 with Corr. with
worksample noncognitive wks, Math. Vocabulary
Arithmetic .09 (.02-.20)3 .31
Counting Backwards .06 (.00-.13) .32

Number Reasoning .06 (.00-.13) .34

Rule Learning .10 (.01-.21) .37

Number Series .10 (.00-.25) .58

1Color Perception, Personality, Tonal Memory, Pitch
Discrimination, Rhythm Memory, Tweezer Dexterity, Writing
Speed, Writing Hand, Finger Dexterity, Eyedness,
Handedness.

2Average based on absolute values. All coefficients
partialled for sex and age.

3Numbers in parentheses represent range of correlations
on which average correlation is based.
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Table 24

Regression Analyses Predicting Numerical Facilitx
Worksamples Using Worksamples of JOCRF Battery

Numerical facility 2 R-
worksample Step Multiple R squared
Arithmetic Step 1 .37 (.35)3 .14
Step 2 .40 (.36) .16
Step 3 .58 (.81) .28
Step 4 .56 (.53) .31
Counting Backwards Step 1 .42 (.40) .18
Step 2 .45 (.41) .20
Step 3 .48 (.45) .23
Step 4 .49 (.45) .24
Number Reasoning Step 1 .47 (.46) .22
Step 2 .48 (.45) .23
Step 3 .53 (.50) .28
Step 4 .56 (.53) .31
Number Series Step 1 .55 (.54) .30
Step 2 .57 (.5%5) .33
Step 3 .59 (.56) .34
Step 4 .63 (.61) .40
Rule Learning Step 1 .60 (.59) .36
Step 2 .61 (.59) .37
Step 3 .63 (.61) .39
Step 4 .64 (.62) .41

1Sex and age were not partialled out of the variables used
in this table. It was expected that this would not affect
the results of the multiple regression.

2Step

1 - Cognitive worksamples excluding Graphoria
Step 2 - Noncognitive worksamples
Step 3 - Graphoria
Step 4 - Mathematics Vocabulary

3Number in parenthesis is multiple correlation adjusted
for shrinkage.
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nonnumerical and numerical facility worksamples was found for the
Rule Learning and Number Series tests. Nevertheless, only about
40% of the variance in these two tests is explained by all the
other JOCRF battery worksamples combined. Even less of the
variance in the other three numerical facility tests was
explained by the other JOCRF worksamples. In other words, the
construct of numerical facility could not be measured without
administering at least one worksample from the numerical facility
battery.

Table 24 also indicates that the noncognitive tests explained
relatively little variance in the numerical facility worksamples,
after the variance explained by the cognitive tests was removed.
In general, Steps 3 and 4 also explained relatively little
variance in the numerical facility worksamples above and beyond
that which was explained by the previous steps. This was not
surprising in light of the fact that only one variable was
entered in each of Steps 3 and 4, while a total of 28 variables
were entered in the previous two steps. An exception to this was
Arithmetic, where Graphoria (Step 3) added 12% in explained
variance above and beyond that explained in Steps 1 and 2. There
is no ready explanation for this result.

Summary

{a) In a factor analysis with the cognitive worksamples of
the JOCRF battery, all the numerical facility worksamples loaded
primarily on one factor.

(b) Of the five numerical facility worksamples, Rule Learning
and Number Series generally showed the highest loadings on the
other factors.

(c) Based on (a) and (b) it can be said that the numerical
facility worksamples showed discriminant validity, but that Rule
Learning and Number Series were not quite as discriminantly valid
as the other three worksamples.

(d) When included in the factor analysis, Graphoria emerged
as a major test on the Number factor.

(e) Dutside of the five numerical facility worksamples and
Graphoria, Number Memory was the only worksample from the regular
JOCRF battery that showed even a moderate loading on the Number
factor (.32).

(f) The correlations between the numerical facility
worksamples and the noncognitive worksamples were generally very
low.

(g) Multiple regression analyses showed that between 24 and
40% of the variance in the numerical facility worksamples can be
explained by the cognitive and noncognitive tests of the JOCRF
battery. Since about 85% of the variance in the numerical
facility tests is reliable, between 45 and 61% of the reliable
variance in the numerical facility worksamples cannot be
explained by the other worksamples in the battery. This is
further evidence that the numerical facility worksamples are
discriminantly valid.
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Numerical Facility and Choice of Major

Up to this point it has been shown that the numerical
facility battery is internally reliable and discriminantly
valid. The question remains whether it has criterion-related
validity. That is, does it discriminate between individuals who
differ in their numerical facility? One variable that was
available for testing this question was examinees' choice of
college major. Variance in choice of college major is
associated, at least in part, with variance in ability. For
example, it would be expected that an individual excelling in
numerical facility would tend to choose a major in which he would
have the opportunity to use this ability. An individual low on
this ability would be expected to avoid a field in which
manipulation of numbers is important.

Table 25 displays the scores of examinees on the numerical
facility tests as a function of their college major. As cah be
seen, examinees in the "quantitative” majors scored higher on ail
the numerical facility worksamples than any of the other groups.
The difference on the Arithmetic worksample between quantitative
examinees and those choosing business or social science
approached significance (p < .10). All other differences betwcen
quantitative and nonquantitative majors were significant at the
.01 level. Some significant differences also emerged from the
comparison of the nonquantitative majors: (a) business and
social science majors scored higher (p < .01) than humanities
majors on the Arithmetic and Counting Backwards worksamples, and
(b) social science majors scored higher (p < .05) than business
and humanities majors on the Rule Learning worksample. T-tests
were used for all pairwise comparisons.

Summary

Examinees choosing majors that require quantitative thinking
scored higher on the numerical facility worksamples than those

choosing other majors. In addition, business and social science
majors tended to score higher on these worksamples than
humanities majors. In other words, with respect to the choice of

college major, the numerical facility battery displayed
criterion-related validity.

Further Development of the Numerical Facility Worksamples

As noted earlier, the alpha reliabilities of the numerical

facility worksamples are moderately high. However, if a further
increase in reliability is needed, it can generally be achieved
by increasing the number of items in the worksample. In speeded

tests such as Arithmetic and the Application section of the Rule
Learning worksample, a proportional increase in time-on-task is
also required.

Caution must be exercised when adding items to a particular
worksample. Such items must be designed so that their

54



Table 25

Breakdown of Scores on Numerical Facility Worksamples
by Major FRield

Difference from sample mean in
standard deviation units

Worksample Qua_mtitgtive1 Business Social science Humanities
Arithmetic .24 .14 .13 -.11
Counting Backwards .30 .12 .12 -.05
Number Reasoning .34 -.03 .02 -.03
Rule Learning .43 -.05 .06 -.06
Number Series .44 .00 .05 -.04

N 76 178 154 165

Note. N on which overall sample mean is based = 771.

1Computer science, engineering, physical sciences, mathematics.
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correlation with earlier items is maximized. It is important to
note that factors such as fatigue, frustration, and boredom may
affect the relationship between earlier and later items in a
particular worksample. Also, item analyses must be conducted to
verify the effectiveness of any items that are added to a
worksample.

It was noted in the section investigating the internal
structure of the Number Reasoning worksample that two items (8
and 9) displayed relatively low item-total correlations. These
items should be replaced with items having higher item-total
correlations.

The score used in the Counting Backwards worksample was speed
rather than accuracy; speed displayed a much higher reliability
than accuracy. Combining the two scores resulted in a
reliability coefficient that was lower than that of speed alone.
It is recommended that the role of accuracy in Counting Backwards
be further investigated.

OVERALL SUMMARY

The earlier sections of this paper examined separately each
of the worksamples in the numerical facility battery. It was
concluded that each of the numerical facility worksamples
measures primarily one construct. This was based upon: (a)
moderately good reliabilities, ranging between .84 and .89, and
(b) where appropriate, factor analyses that revealed an
underlying unidimensional factor structure. Thus, based on
internal structure alone, it cannot be said that any one
worksample is significantly superior to the others.

After it was established that each of the numerical facility
worksamples is moderately reliable and unidimensional, the
worksamples were examined jointly. A factor analysis of the
numerical facility worksamples yielded one factor. This
indicates that the construct measured reliably by each of the
individual worksamples is the same across the set. In other
words, taken together, the numerical facility worksamples
constitute a cohesive battery measuring a Number factor.
Nevertheless, the worksamples differed in their loadings on the
Number factor. Arithmetic and Counting Backwards displayed the
highest loadings (.66), while Number Series, Rule Learning, and
Number Reasoning displayed lower loadings (.61, .60, and .58,
respectively). This suggests that Arithmetic and Counting
Backwards measure the Number factor somewhat better than the
other worksamples.

The next set of analyses examined the discriminant validity
of the numerical facility worksamples with respect to the other
worksamples in the JOCRF battery. In general, the numerical
facility worksamples displayed little relationship with the
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worksamples of the standard battery, indicating good discriminant
validity. The only exception to this was Graphoria, a test of
clerical speed utilizing numbers, which displayed moderate
correlations with the worksamples of the numerical facility
battery. These analyses indicate that, in general, the Number
factor is not measured by the other worksamples in the JOCRF
battery.

A joint factor analysis of the cognitive worksamples of the
standard battery and the numerical facility worksamples yielded a
distinct Number factor. All of the numerical facility
worksamples were primary defining items of this factor.

Graphoria also emerged as a major item on the Number factor.
When the factor analysis was repeated excluding Graphoria, the
worksamples of the numerical facility battery remained in one
factor. Furthermore, no other worksamples emerged as primary
defining items of this factor.

While all the numerical facility worksamples loaded on one
factor, they differed on: (a) the degree to which they loaded on
the Number factor and (b) the degree to which they loaded on
other factors. Arithmetic and Counting Backwards loaded highest
on the Number factor (.84 and .58, respectively), while
displaying relatively low loadings on nonnumerical factors. Rule
Learning and Number Series displayed the lowest loadings on the
Number factor (.44 and .41, respectively), while generally
loading higher than the other numerical facility worksamples on
nonnumerical factors. 1In other words, Arithmetic and Counting
Backwards are more discriminantly valid than Rule Learning and
Number Series.

A similar pattern, though less pronounced, emerged when the
numerical facility worksamples were correlated with the
noncognitive worksamples of the JOCRF battery. Arithmetic and
Counting Backwards displayed lower average correlations with the
noncognitive worksamples (.09 and .06, respectively), as compared
with Rule Learning and Number Series (each correlating on average
.10 with the noncognitive worksamples). Number Reasoning's
discriminant validity was somewhat better than that of Rule
Learning and Number Series but not quite as good as that of
Arithmetic and Counting Backwards.

The final set of analyses examined the criterion-reiated
validity of each of the numerical facility worksamples. The
external criterion used in this study was examinees' choice of
college major. PFour categories of college major were
identified: quantitative, business, social science, and

humanities. The average score of examinees in each category of
major was computed for each of the five numerical facility
worksamples. Quantitative majors performed significantly better

than humanities majors on every numerical facility worksample.
However, the degree to which quantitative majors differed in
their performance from nonquantitative majors varied across the
numerical facility worksamples. The pattern that emerged here
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was a reversal of the pattern for discriminant validity.
Arithmetic displayed the weakest criterion-related validity--
quantitative majors did not perform significantly better on
Arithmetic than business and social science majors (which was not
the case for any of the other numerical facility worksanmples).
Next to Arithmetic, Counting Backwards displayed the weakest
criterion-related validity, showing relatively small differences
in performance between quantitative and nonquantitative majors.
Rule Learning and Number Series displayed the strongest
criterion-related validity. Number Reasoning showed
criterion-related validity that was superior to Arithmetic and
Counting Backwards but not as strong as that displayed by Rule
Learning and Number Series.

Conclusion

Arithmetic and Counting Backwards are, psychometrically, the
purest numerical facility measures in the five-worksample set.
While their reliability is similar to the that of the other
numerical facility worksamples, they display higher loadings on
the Number factor and better discriminant validity. While least
pure in the psychometric sense, Rule Learning and Number Series
display the best criterion-related validity of the numerical
facility worksamples. Number Reasoning shows discriminant and
criterion-related validities that are in between those of the two
pairs of worksamples noted above.

It is important to remember that all five worksamples are
moderately reliable and that all measure the Number factor at
least moderately well. In addition, all show at least moderate
discriminant and criterion-related validities. Consequently, all
can be considered to be suitable measures of numerical facility.
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